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Abstract 

 
Heat-flow and thermal-stress models of continuous steel slab casting are calibrated with detailed 
measurements of a breakout and applied to predict longitudinal off-corner crack formation.  
First, a fluid mass balance is applied together with the measured slide-gate position, mold level, 
casting speed histories to reconstruct the transient events that occurred during the breakout, 
including the flow-rate and solidification time histories.  An efficient one-dimensional (1-D) heat 
transfer model of the mold, CON1D, is calibrated to match the measured mold heat flux and 
thermocouple temperatures, with the help of a full 3-D finite-element model.  Using these 
results, a finite-element thermal-stress model of the solidifying shell was able to match the 
measured shell thickness profiles, and was applied to reveal insights into interfacial gap 
conditions and other effects on the formation of off-corner longitudinal cracks and breakouts. 
 

Introduction 
 
Computational models of heat transfer and thermo-mechanical behavior are useful tools to 
understand quality problems such as longitudinal cracks in continuous casting of steel.  Making 
accurate, quantitative predictions is difficult, however, because many of the phenomena, such as 
interfacial heat transfer and crack formation, depend on empirical parameters.  One way to meet 
this challenge is to calibrate the models with measurements on the commercial process.   
 
A breakout is the ultimate casting defect.  This work performs comprehensive measurements of a 
breakout at Nippon Steel Yawata Works No.2 strand caster, and presents the casting conditions 
and data as a benchmark for understanding breakout events, and for model calibration.  Finally, 
the breakout is treated as a longitudinal crack, where the conditions that caused it can be 
estimated with sufficient accuracy to use as a basis for evaluating hot-tear crack criteria. 
 

Breakout Analysis 
 
The breakout occurred while casting a 252 x 1360 mm slab of plain carbon steel (0.162%C, 
0.71%Mn, 0.016%P, 0.006%S, 0.02%Si, 0.039%Al), under generally steady conditions, given in 
Table 1, 104 minutes after changing heats.  Liquidus and solidus temperatures are 1515.4 and 
1479.8 ºC.  The mold was 258mm thick (top) x 900mm long with 9.5mm taper/side.  The mold 
powder had CaO/SiO2

 

 ratio of 1.2, with a flux solidification temperature of ~1160 ºC, and 
viscosity of 0.6P at 1300ºC.  The oscillation marks averaged 0.37mm in depth and 3.55mm in 
width.   
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Figure 1 contains a schematic of the process and Figure 2 shows pictures of the breakout shell 
and hole, which was 34,000 mm2

 

 in area.  The breakout occurred on the fixed (inside-radius) 
wideface (WF), 30mm from the north side (NF) corner, and 1200mm below the top of the shell.  
Figures 3 and 4 plot several important variables with time before and during the breakout.  These 
data were recorded every one second.  Casting speed is constant at 1.4 m/min for over 1000 
seconds prior to the breakout.  Time of 0 sec is defined when the sliding-gate nozzle was closed 
completely.  Considering the rapid level drop and gradual increase in nozzle opening at –22 sec, 
the breakout is believed to have started at this time.  The meniscus level signal became erroneous 
at times above –5 sec.  Heat flux was constant until ~10s, but variations were observed between 
the four faces. 

Figure 1. Process schematic and mass flows  

Table 1. Casting conditions 
 
Casting speed 23.4 mm/s 
SEN submergence depth 230 mm 
Pour temperature 1540 ºC 
Meniscus dist. from mold top  96mm 
Mold conductivity  (WF) 242 W/mK 
 (NF)   355 W/mK 
Mold heat flux (fixed WF) 
(average)         (south NF) 
 (loose WF) 
 (north NF) 

1.279 MW/m2 
1.294 MW/m2 

1.195 MW/m2 

1.336 MW/m2  
 

 
Figure 2. Breakout shell showing view looking down (left) and closeup of hole (right) 
 

 
Figure 3. Recorded casting condition histories 

 
Figure 4. Recorded mold heat flux histories 
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In order to analyze solidification of each point along the breakout shell, the rate of level drop 
must be determined during the breakout.

Estimating flow rates 

2

 

?  Considering an Eulerian reference frame relative to 
the steady meniscus position, the following mass balance equation relates the flow rates,  

 in drop out drainQ Q Q Q+ = +  (1) 
 
where Qin is input from sliding nozzle gate, Qdrop is flow rate due to the level drop, Qout is output 
by the moving solid shell, and Qdrain is drainage from the breakout hole.  Before –22sec, Qdrain = 
0, and after 0sec, Qin = 0.  Figure 1 shows a schematic of these flow rates.  The input flow rate, 
Qin, is found from the time-dependent position of the slide-gate nozzle, Xt, according to a 
relation found from previous nozzle measurements, given in Figure 5 [1].  The outlet flow rate, 
Qout
 

, is found from the time-dependent casting speed, slab width, and thickness, as follows: 

( )out CQ W Y V tρ= × × ×  (2) 
 
where ρ is steel density, W is slab width, Y is slab thickness, and VC is casting speed.  Dividing 
the casting time into two regions, prior to -5s, the liquid level is measured, so Qdrop

 

 is found by 
rearranging Eqs. 1-2 as follows: 

1( )
( ( 1))

t t
drop

z zQ W Y
t t

ρ −−
= × × ×

− −
 (3) 

 
Then, Qdrain is found from Eq. (1), and the breakout hole size, St (mm2

 

), is found as follows: 
drain

t
t

QS
vρ

=
×

; where 12t tv gh −= ;  where 1 1 1t hole t th z z− − − −= −  (4) 

where zt and zt-1 are distance below the steady state meniscus to the liquid level at times t and t-
1, vt is the average speed of fluid draining from the breakout hole at time t, g is gravitational 
acceleration, ht-1 is distance from the liquid level to the breakout hole at time t-1, and zhole-t-1

 

 is 
distance below the steady state meniscus to the breakout hole at time t-1.  Figure 6 plots the 
breakout hole size, including calculations using this method before -5 sec.  

 
Figure 5. Previous measured relation between 
flow rate (Qin) and sliding gate position (Xt

 

) 
Figure 6. Calculated evolution of the breakout 
hole size 
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At times after -5sec, the breakout hole size was estimated with an exponential curve fit: 
 

0.21193713.7 t
tS e=  (5) 

 
Finally, the square point in Figure 6 is the measured size of the final breakout hole.  From the 
breakout hole size in Figure 6, Qdrop and Qdrain were calculated after -5 sec using Eqs. (1), (4) 
and (5).  All four flow rates are plotted in Figure 7.  At –4sec, the flow rate due to level drop, 
Qdrop became larger than the outflow from the shell withdrawal at the casting speed, Qout.  This 
means that top of the breakout shell was cast and exposed at this time, as the liquid level dropped 
below this point.  Drainage from the breakout hole Qdrain
 

 stopped at 11sec. 

Figure 8 illustrates the movement of the shell, the liquid level, and the breakout hole during the 
breakout, relative to the steady-state meniscus level (y=0).  The solid lines plot distance versus 
time histories for several points on the final strand surface, which became the breakout shell. 
These curves were derived from the time- dependent casting speed data.  The bottom of the 
breakout hole was cast at –59sec.  The dotted line indicates liquid level.  The results in this figure 
show that the breakout initiated just below mold exit, and enlarged as it moved downward. 

Estimating solidification time 

 

 
Figure 7. Calculated flow-rate histories 

 
Figure 8. Distance traveled by different points on 
breakout shell showing distance relationships 

 
Figure 8 can be used to find the total solidification times of each point on the breakout shell, ts
 

, 

0 1s s st t t= + ;           where 4

0s

t

Ct
V dt L−

=∫ ;        and 1

4

( )st

Ct

dz V dt L
dt−

− =∫  (6) 

 
where ts0 is solidification time for casting at steady-state, (which occurs before -4s) and ts1 is the 
extra solidification time that occurred after the liquid level had dropped below the top of the shell 
(which occurs after -4sec).  An example of these two solidification times is illustrated 
graphically in Figure 8 for a typical point on the breakout shell (L=540mm below the top) that 
started solidification at t=-30s.  During steady casting, ts1
 

=0.   

Solidification times are calculated for every point along the breakout shell and plotted in Figure 
9.   Relative to steady casting, the breakout shell has more solidification time, especially near the 
top of the shell, where the extra time is a larger fraction of the total.  The measured breakout 
shell thickness profiles along the fixed wideface (WF) and north narrow face are shown in Figure 
10.  As expected, the breakout shell is thicker than at steady-state, especially near the top.   
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Figure 9. Solidification times during 
steady casting (ts0) and during the 
breakout (ts

 

) 

Figure 10.  Measured thickness of breakout shell 
compared with model predictions during the break-
out and at steady casting. 

 
The etched solidification structure around the strand perimeter is shown in Figure 11, revealing 
shell thickness variations around the perimeter of the strand.  The shell is thinner at the off-
corner region that was cast 5m below where the breakout eventually formed (line B) relative to 
elsewhere (line A).  Specifically, the thickness at B (6.3mm) is 72% of that at A (8.8mm).  The 
narrowface is thicker, corresponding to the higher heat flux on the north NF.      

 
Figure 11 Microstructure of solidified slab cast just before the breakout, showing shell thinning 
 

Temperature measurements were collected from thermocouples embedded in the copper mold 
walls.  The geometry of the wide-face copper mold plate is pictured in Figure 12 in a symmetric-
repeating section, including the thermocouple hole.  Figure 13 shows the 3-D temperature 
distribution in this mold predicted with ABAQUS [1,2,3]. 

Mold Temperatures 

 
Figure 12. Wideface mold-copper geometry 

 
Figure 13. Thermocouple measurements 
compared with 3-D model predictions 
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These computations were used to determine “offset distances” to enable CON1D to achieve 
equal accuracy with 1-D mold temperature predictions [4,5].  Then, CON1D was applied to 
predict mold heat transfer for the conditions of the breakout.  Interfacial parameters were 
adjusted to achieve a reasonable match with the thermocouple measurements, shell thickness 
down the mold center, and average mold heat flux.  These parameters include gap-layer flux 
conductivity (1.0 W/mK), the ratio of average solid flux velocity to casting speed (0.085), solid 
fraction for shell thickness (0.35), and cold face scale thickness (0.002mm).  Selected time-
averaged thermocouple measurements are shown in Figures 14 and 15, compared with 
corresponding CON1D predictions at the depth of the thermocouples beneath the mold hotface.   

 
Figure 14.  Temperature profile down fixed 
WF mold at thermocouple location 

 
Figure 15.  Temperature profile down south 
NF mold wall at thermocouple location  

 

The heat flux profiles found from the calibrated CON1D model are presented in Figure 16.  The 
average of these profiles matches the measurements in Table 1 for the south NF and fixed WF. 
Further details on the CON1D model and its calibration are presented elsewhere [5-7].    

Mold heat flux 

 
Figure 16. Heat flux profiles predicted down mold 

 
Thermal-mechanical Model and Hot Tearing Criteria 

 
The solidification process was simulated using a computational thermal-mechanical model of a 
2-D slice through one quarter of the strand in the mold, using previously-reported models [8-10] 
in ABAQUS [2].  Using the temperature results from CON1D, constitutive equations for 
austenite and ferrite presented in previous work [8,10], and a state of generalized plane strain, the 
displacement, strain, and stress histories of each point within the shell was simulated.   
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As found in many previous works [8], gaps are computed to form near the corner owing to 
shrinkage of the shell away from the mold wall.  The size of this corner gap was coupled with the 
heat-flow computation to determine the heat flux as a function of distance around the strand 
perimeter.  Seven different cases were modeled, as summarized in Table II.  Most cases assumed 
the same mold flux thickness profiles computed at the mold center, with the additional gap being 
filled with air.  Case 2 assumed the entire gap to filled with mold flux, and Case 3 assumed the 
extreme case of the off-corner region being filled with air, to simulate a flux infiltration problem.   
 
The effect of mold distortion was included in Cases 4 and 5, based on three-dimensional 
ABAQUS simulations of the complete mold plates and water boxes [1,3].  Case 6 included a 
semi-elliptical-shaped depression (3mm wide x 1mm deep) centered at the critical location, 20-
mm from the strand corner.  Finally, Case 7 included a trilinear taper of the narrow face, which 
provided additional squeezing of the wideface all down the mold.   
 

Table II Thermal-mechanical model study 
 

Case Off-corner 
Gap Material 

Other Effects 

1 Flux & air Ignored 
2 Flux only Ignored 
3 Air only Ignored 
4 Flux & air With mold distortion 
5 Flux & air With 3.8X more 

mold distortion 
6 Flux & air With depression 
7 Flux & air With trilinear taper 

 

 
Figure 17. Shell thickness at breakout location 

 
The predicted shell growth along the breakout location near the strand corner is given in Figure 
17 for all cases.  Most cases are similar, and roughly match the shell thickness measured along 
the opposite (south) side of the strand.  Case 2 is thickest, showing a thicker shell, owing to the 
improved gap conductivity.  Case 3 is the thinnest, owing to the low gap conductivity.   
 
Cracking is predicted by contours of the Zero Ductility Temperature (ZDT), and a hot-tearing 
damage index from Nagata [11].  Predictions for the seven cases are compared in Figures 18-19.  

 
Figure 18. Effective shell thickness based on 
ZDT at the breakout comparing 7 cases. 

 
Figure 19. Damage index comparison for 7 
cases 
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As expected, Case 2 had no drop in ZDT near the corner and almost no damage, showing that if 
liquid mold flux is able to fill the interfacial gap, then longitudinal cracks and breakouts should 
be avoided.  Case 3 had the most severe damage, with ZDT extending to the strand surface and a 
peak damage index of 0.6 at the eventual breakout location.  Surprisingly, Case 6 with the 
depression had a smaller damage index, owing to the increased temperature of the region causing 
expansion of the surface that decreased the tension inside the solidifying shell.  Case 7 with the 
trilinear taper had lower damage index as well, owing to compression from the narrowface taper 
matching better with the natural shrinkage of the shell.  None of the cases predicted a damage 
index exceeding 1, indicating that cracks should not have formed in the mold.  Perhaps some 
other effect, or combination of effects, occurred to cause the breakout, such as tensile stress 
below the mold, or perhaps the damage criterion needs further work. 
 

Conclusions 
 
This work presents a comprehensive analysis of the formation of a breakout shell on a 
commercial slab caster, including a simple methodology to extract the detailed evolution of the 
breakout hole size, flow rates and solidification times during the breakout, based on the 
measurements.  This methodology can serve to augment future analysis of breakout shells. 
 
Further insights are provided by a calibrated heat transfer model, CON1D, which was able to 
match the measured mold temperatures, shell thickness profiles, average mold heat fluxes, and 
mold wall temperatures.  This case study can serve as a benchmark for further model validation.   
 
A thermal-mechanical model was applied to simulate the breakout, focusing on solidification in 
the corner.  The simulation predicts the most severe damage at the location in the off-corner 
region of the wideface, where the breakout formed.  Many new insights are provided.  Achieving 
good lubrication (with liquid mold flux filling the gap) and optimized narrow face taper should 
help to avoid longitudinal cracks, and corresponding breakouts.  Because the maximum damage 
index never exceeded 1, further work is needed to quantify longitudinal cracks and breakouts in 
continuous casting. 
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